Moment estimation using extreme value techniques
نویسنده
چکیده
The thesis is composed of three papers, all dealing with the application of extreme value methods to the problem of moment estimation for heavy-tailed distributions. In Paper A, an asymptotically normally distributed estimate for the expected value of a positive random variable with infinite variance is introduced. Its behavior relative to estimation using the sample mean is investigated by simulations. An example of how to apply the estimate to file-size measurements on Internet traffic is also shown. Paper B extends the results of Paper A to a situation where the variables are mdependent. It is shown how this method can be applied for estimating covariances and be put to use as a diagnostic tool for estimating the order of an ARMA-processes with heavy-tailed innovations. Paper C further extends the methodology to the case of regression through the origin with heteroscedastic errors. In a simulation study, the estimate is compared to some standard alternatives and used for estimating the population total in a superpopulation sampling framework.
منابع مشابه
Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملKernel-type Estimators for the Extreme Value Index by P. Groeneboom,
A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasimaximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel...
متن کاملNon-parametric estimation of extreme risk measures from conditional heavy-tailed distributions
In this paper, we introduce a new risk measure, the so-called Conditional Tail Moment. It is de-fined as the moment of order a ≥ 0 of the loss distribution above the upper α-quantile whereα ∈ (0, 1). Estimating the Conditional Tail Moment permits to estimate all risk measuresbased on conditional moments such as Conditional Tail Expectation, Conditional Value-at-Risk or Condi...
متن کاملProbabilistic Analysis of List Data for the Estimation of Extreme Design Loads for Wind Turbine Components
Robust estimation of wind turbine design loads for service lifetimes of 30 to 50 years that are based on field measurements of a few days is a challenging problem. Estimating the long-term load distribution involves the integration of conditional distributions of extreme loads over the mean wind speed and turbulence intensity distributions. However, the accuracy of the statistical extrapolation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003